Recycling of Dredged Material From Confined Disposal Facilities – Suitability and Sustainability Issues

Trudy J. Estes, ERDC

Focus

- □ Sustainability
 - Concept
 - Sustainability and confined disposal facilities (CDFs)
 - Management for sustainability
 - Strategy* and supporting research
- Suitability of dredged material for re-use
 - Criteria*
 - Characterization*
- Practice

Sustainable CDFs

- "...to manage dredged material disposal in such a manner that:
 - 1) disposal capacity is optimized and dredging operations are not limited by disposal capacity;
 - 2) operations are economically feasible now as well as in the future; and
 - 3) adverse environmental impact is minimized and benefits maximized."

What is the significance of this issue?

- □ 33CFR 336.1, "The maintenance of a reliable Federal navigation system is essential to the economic wellbeing and national defense of the country."
- □ Maintenance = Dredging
- \square Dredging = Disposal
- □ CDFs costly, diminishing capacity
- □ Open water not acceptable to all stakeholders
- □ BU technical, environmental, and economic constraints

CDF Capacity – How big is the issue?

- □ District survey
 - Scope and importance of capacity issues
 - Customary disposal practices
 - Issues with policy, beneficial use, funding
- □ IWR database
 - Dredging volumes, methods
 - Disposal trends
- □ Online DMMPs, reports
- □ Inventory of CDFs

Dredging Volumes – 5 yr Average

Reported capacity problems

- □ LRD (1.9%)^a
 - Detroit District
 - ☐ Milwaukee (mean 360K cy/dredging cycle)
 - ☐ Green Bay (mean 360K cy/dredging cycle)
 - □ Duluth-Superior Harbor
 - Buffalo District
 - □ Cleveland (mean 290K CY/dredging cycle)
 - □ Lorain Harbor
- □ SAD (24.9%)
 - Charleston District
 - ☐ Areas along Atlantic Intracoastal Waterway (AIWW)
 - ☐ Middle Winyah Bay (Georgetown Harbor)

- □ MVD (36.2%)
 - MVN District
 - Calcasieu River
- □ NWD (2.4%)
 - Portland District
- □ SPD (2.4%)
 - San Francisco
 - □ 2 coastal projects with dangerous entrance channels
 - Sacramento
- □ SWD (17.1%)
 - Galveston District
 - (a) Percentage of 5 yr average national dredging volume

Dredging & Disposal Trends

Corps of Engineers annual dredged material placement (IWR 2008)

Disposal Method as Percent of Annual Dredging Volume for Detroit District

Sustainable CDFs – The Three M's

- □ Reduce dredging
 - Reduce sediment input to channel
 - Reduce shoaling
 - Eliminate un-necessary dredging
- □ Optimize dredging?
- □ Alternative or multiple placements

Erosion control

- □ Surface and bank erosion
 - Agricultural practices
 - Construction activity
 - Imperviousness of the built environment
- Programs
 - Voluntary regulation farmland set-asides (USDA-NRCS)
 - Great Lakes Basin Program for Soil Erosion and Sediment Control (GLC/NRCS)
 - State water quality regulations
- □ Issues
 - Loss not controlled by the Corps
 - Once in the channel, Corps has responsibility
 - Multi-agency (state and federal authorities) efforts needed to strive toward sedimentation reduction.

Shoaling prevention

- □ Concepts
 - Keep sediment moving
 - Keep sediment from entering an area
- □ Structures
 - Flow training
 - Flow augmentation
 - Barriers
 - Sedimentation basins
- □ Issues
 - Uncertain effects?

- □ Economic justification
 - Cost benefit ratio found for only one project
 - Interpreting annual tonnages and revenues in terms of justification for a dredging project would be even more difficult.
 - Evaluate true cost of deepening & widening
- Defining bottom
 - Measurement inconsistencies
 - Fluid mud

Optimizing dredging

- Equipment
 - Water injection dredge
- Overdepth reduction
 - Initial disposal volume reduction
 - Advanced dredging = reduced long term volume?
 - More precision = more cost
 - Silent inspector
- □ Performance Specifications
 - Motivating optimum operation vs. constraining overdepth

Alternative placement

- □ Employ multiple disposal alternatives (for the same project)
 - Nearshore placement
 - Open water
 - CDF only when best or only option
- □ Issues
 - Cost and the Federal Standard
 - Life cycle economic analysis (value engineering)

Managing Capacity

- □ Promote consolidation
- □ Judicious use of expansion
- □ Design or retrofit for material recovery

Promoting Dewatering & Consolidation

- □ Objective
 - Accelerate consolidation to free capacity
- □ Factors
 - Hydraulic or mechanical dredging
 - Compressibility of the material
 - Lift thickness, surcharge, drainage layers
- Dewatering tools
 - Wick drains, underdrains, trenching, thin layer placement
 - Geobags, phytodewatering, vacuum dewatering and electro-osmosis

Expansion

- □ Buying time not a sustainable solution
- □ Utilize in place materials when possible
- Limitations
 - Foundation strength
 - Ability of in-place material to support construction equipment and dike footprint
 - Suitability of in-place material for dike construction
 - Dike raising and diminishing return at small sites
 - Wetland protection

Design & Retrofit for Material Recovery

- Objectives
 - Segregation of clean vs. contaminated & coarse vs. fine materials
 - Simultaneous disposal and dewatering
 - Provide "treatment" and processing areas
 - Provide storage
- Compartmentalize
 - Exploit passive separation
 - Rotational disposal
- □ Issues
 - Limited technical/design guidance for non-traditional processes

In practice...

- □ Degree of CDF management varies by District
- 16 of 24 Districts reported active dewatering, including weir construction and management, and trenching
- Many Districts using dredged material for berm construction
- Physical separation was listed by five Districts
- □ Nine Districts reported actively employing material recovery

Maximizing Beneficial Use

- Greatest potential for benefit in terms of CDF life
- Limitations
 - Market
 - Perception
 - Policy
 - Scheduling
 - Funding
 - Criteria

- □ Extensive preplanning requirements
 - Acquire real estate and obtain environmental clearances
 - Separate funding and authorizations
 - Incompatible with O&M dredging schedules
- Authorities
 - Inconsistent interpretation
 - Focus on aquatic ecosystem restoration/creation (WRDA)
- Lacking
 - Standard procedures
 - Global BU criteria
 - CDF characterization guidance

Recommendations from the field

- □ Establish a national Dredged Material Management Team (DMMT)
 - Disseminate advances in beneficial use, criteria and market development
 - Work toward consistent policy interpretation or revision
- Establish business practices specific to BU
 - Standard Operating Procedure (SOP)
 - Program Management Plan (PgMP)
 - Project Management Business Practice (PMBP)

Supporting research

- □ Beneficial use criteria
 - Identifying data gaps
 - Developing criteria development approach
 - Engaging agencies for collaboration and buy-in
- □ CDF and material characterization
 - Maximizing information/minimizing sampling
 - Estimating and characterizing targeted fractions
 - CDF case study

CDF case study

Soil Composition & Organics (including P1 - P3)

Resemblance: D1 Euclidean distance

CDF case study

FRACTION = ORIGINAL ANALYTE = INDENO(1,2,3 - CD)PYRENE

Size

Sample

IEPA TACO (0.9 mg/Kg) and Background Metropolitan Statistical Area Criterion (0.86 mg/Kg)
 Sample Mean (and 95% Confidence Interval); Relative Error = Coefficient of Variation

Conclusions

- □ No silver bullet
- Existing tools and resources applicable to sustainable practices
- Policy, statutory and regulatory vehicles and impediments
- □ Research necessary to advance the practice of sustainable CDF management
- □ Need to integrate planning process with operations

Triage

- During DMMP development & periodic updates
 - Long-term cost analysis to collectively weigh minimization and dredging techniques and placement options.
 - Consider most modern tools available, long-term impacts on capacity, and benefits to be derived from RSM principles and non-traditional management.